FusionQ: a novel approach for gene fusion detection and quantification from paired-end RNA-Seq

Gene fusions, which result from abnormal chromosome rearrangements, are a pathogenic factor in cancer development. The emerging RNA-Seq technology enables us to detect gene fusions and profile their features.

In this study, a team led by researchers at Wake Forest School of Medicine, proposed a novel fusion detection tool, FusionQ, based on paired-end RNA-Seq data. This tool can detect gene fusions, construct the structures of chimerical transcripts, and estimate their abundances. To confirm the read alignment on both sides of a fusion point, they employed a new approach, “residual sequence extension”, which extended the short segments of the reads by aggregating their overlapping reads. They also proposed a list of filters to control the false-positive rate. In addition, they estimated fusion abundance using the Expectation-Maximization algorithm with sparse optimization, and further adopted it to improve the detection accuracy of the fusion transcripts. Simulation was performed by FusionQ and another two stated-of-art fusion detection tools. FusionQ exceeded the other two in both sensitivity and specificity, especially in low coverage fusion detection. Using paired-end RNA-Seq data from breast cancer cell lines, FusionQ detected both the previously reported and new fusions. FusionQ reported the structures of these fusions and provided their expressions. Some highly expressed fusion genes detected by FusionQ are important biomarkers in breast cancer. The performances of FusionQ on cancel line data still showed better specificity and sensitivity in the comparison with another two tools.


Availability – FusionQ is free and available at http://www.wakehealth.edu/CTSB/Software/Software.htm.

  • Liu C, Ma J, Chang CJ, Zhou X. (2013) FusionQ: a novel approach for gene fusion detection and quantification from paired-end RNA-Seq. BMC Bioinformatics14(1), 193. [article]
Scroll To Top