subSeq – Determining appropriate sequencing depth through efficient read subsampling

Next-generation sequencing experiments, such as RNA-Seq, play an increasingly important role in biological research. One complication is that the power and accuracy of such experiments depends substantially on the number of reads sequenced, so it is important and challenging to determine the optimal read depth for an experiment or to verify whether one has adequate depth in an existing experiment.

By randomly sampling lower depths from a sequencing experiment and determining where the saturation of power and accuracy occurs, one can determine what the most useful depth should be for future experiments, and furthermore confirm whether an existing experiment had sufficient depth to justify its conclusions. Researchers from Princeton University introduce the subSeq R package, which uses a novel, efficient approach to perform this subsampling and to calculate informative metrics at each depth.


Availability and Implementation: The subSeq R package is available at


Robinson DG, Storey JD. (2014) subSeq: Determining appropriate sequencing depth through efficient read subsampling. Bioinformatics [Epub ahead of print]. [article]