scater – pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R

Single-cell RNA sequencing (scRNA-seq) is increasingly used to study gene expression at the level of individual cells. However, preparing raw sequence data for further analysis is not a straightforward process. Biases, artifacts, and other sources of unwanted variation are present in the data, requiring substantial time and effort to be spent on pre-processing, quality control (QC) and normalisation.

Researchers at the Wellcome Trust Centre for Human Genetics have developed the R/Bioconductor package scater to facilitate rigorous pre-processing, quality control, normalisation and visualisation of scRNA-seq data. The package provides a convenient, flexible workflow to process raw sequencing reads into a high-quality expression dataset ready for downstream analysis. scater provides a rich suite of plotting tools for single-cell data and a flexible data structure that is compatible with existing tools and can be used as infrastructure for future software development.

rna-seqQC of experimental variables

Availability: The open-source code, along with installation instructions, vignettes and case studies, is available through Bioconductor at http://bioconductor.org/packages/scater.

McCarthy DJ, Campbell KR, Lun AT, Wills QF. (2016) scater: pre-processing, quality control, normalisation and visualisation of single-cell RNA-seq data in R. bioRXiv [Epub ahead of print]. [abstract]

Leave a Reply

Your email address will not be published. Required fields are marked *

*

Time limit is exhausted. Please reload CAPTCHA.